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On a Problem In Monotone Approximation
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Let f E C[ -I, I]. A sufficient condition is given which ensures that the nth
polynomial of best approximation to f is increasing for n sufficiently large. Using
this condition, we are able to give a counterexample to a theorem announced by
Tzimbalario [6]. 1989 Academic Press, Inc.

1. INTRODUCTION

Let n, k be nonnegative integers and let lIn denote the set of algebraic
polynomials of degree n or less. Let Ck

[ -1, 1] denote the class of func
tions which have a continuous kth derivative on [-1, 1](C[ -1, 1] will
mean CO[ -1,1]).

For f E C[ -1, 1], define

where II II denotes the uniform norm on [-1, 1]. It is well known that
for each n the above minimum is attained by a unique element in JIno We
call this element the nth algebraic polynomial of best approximation to f.
Later, if no confusion is likely to occur, we will always denote it by Pn for
any given f.

The problem we study in this paper is the following: Let f E C[ -1, 1],
and assume that there exists a <5 > 0, such that

(1.1 )

for all XI' X 2 E [ -1, 1] with x I#- X 2 • What extra condition on f is needed
to ensure that Pn is increasing for all n sufficiently large?

Roulier [4] showed that f E C 2 [ - 1, 1] is such a condition. Also in [4],
Roulier asked: iffEC I

[ -1,1] and satisfies (1.1) (or equivalentlyf'(x)~<5
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for xE[-l, 1J), is Pn increasing for n sufficiently large? In [5J, Roulier
conjectured that the answer is negative.

In answering this question, Tzimbalario [6J announced the following
theorem:

THEOREM 1.1. Let f be a continuous function on [-1, 1J with /' not in
some Lip (x, (X < 1, and /' ~ b for some strictly positive b. Then there are
infinitely many n for which Pn is not increasing.

Fletcher and Roulier discussed this problem in [2J. Their main results
there are the following two theorems.

THEOREM 1.2. Let (X be given in the interval 0 < (X < 1. There exists
fEe 1 [ - 1, 1J for which

and

/'(x) ~ b > 0, XE[-I,IJ (1.2 )

/' E Lip (x, but f' ¢ Lip((X + e) (1.3)

for any e > 0, such that there are infinitely many n for which Pn is not
increasing on [ - 1, 1].

THEOREM 1.3. Let °< (X < 1 be given. There exists a function
fEe 1 [ - 1, 1] for which (1.2) and (1.3) hold and such that Pn is icreasing for
all n sufficiently large.

Also in [2], Fletcher and Roulier drew the conclusion that Theorem 1.3
provides counterexamples to Tzimbalario's Theorem (Theorem 1.1).

We have noted that there might be the following different interpretations
of Tzimbalario's Theorem:

THEOREM 1.1a. Let f be a function in C 1 [ -1, 1] for which (1.2) holds.
If there exists (X in the interval (0, 1), such that /' ¢ Lip (x, then there are
infinitely many n for which Pn is not increasing.

THEOREM 1.1 b. Let f be a function in C 1 [ -1, 1] for which (1.2) holds.
If/' ¢ UO<a< 1 Lip (x, then there are infinitely nfor which Pn is not increasing.

Theorem 1.3 only provides counterexamples to Theorem 1.1a, and it is
obvious that a counterexample to Theorem 1.1 b will automatically be one
to Theorem 1.1a.

The purpose of this paper is to prove a stronger result on the positive
aspect of the problem, and to provide a counterexample to Theorem 1.1 b.
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2. MAIN RESULTS
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THEOREM 2.1. Let f be a function in C[ -1, 1], satisfying (1.1). If
En(f) = o(n- 2), then Pn is increasing for all n sufficiently large.

Since fEC 2[-I, 1] necessarily means En(f)=o(n- 2), by Jackson's
Theorem [1, pp. 147], Theorem 2.1 is stronger than Roulier's result [3].

THEOREM 2.2. There exists f E C 1 [ - 1, 1] for which (1.2) holds, but
f' ¢ U0 < ~ < 1 Lip IX, such that Pn is increasing on [- 1, 1] when n is suf
ficiently large.

The contradiction between Theorems 2.2 and 1.1 is apparent.

LEMMA. Let fEC 1[-I,I] and qnEfln' If Ilqn-fl[=o(n- 2) then
Ilq~11 = o(n 2

).

Proof Let n be fixed, and choose k so that 2k < n ~ 2k + I. Write

k

qn=(qn-q2k+J)+ L (q2'+1-q2,)+ql'
i=O

Since qI = 0, Ilq~11 ~ Ilq~ - q~k+dl +L:7=0 Ilq~'+l - q~d[. Since Ilqn - q2k+dl ~
Ilqn - fll + Ilf - q2k+dl = o(n- 2), by Markov's Inequality, Ilq~ - q~k+,11 =
o(n 2

).

Let A(n) = L:7=0 Ilq~,+, - q~dl. It remains to show that A(n) = o(n2), i.e.,
that for any given e > 0, A(n) < en 2 for n sufficiently large.

We introduce some new notations by letting Vi = q2' and f3i =
SUPj;;> i Ilvj - fll· We have Ilv i+1 - viii ~ f3H 1 + f3i ~ 213;·

By Markov's Inequality, Ilv7+,-v711 ~2f3;(2i+l)4. As Ilqn- fll =o(n- 2),
we may assume that f3i~IXi(2i)-2 where IX;!O.

Now we have

k k k

A(n)~ L 2f3i(2i+l)4~ L 2IX i (2
i)-2(2 i + 1 )4=32 L IX i 4

i
.

i=O ;~O i=O

Given e > 0, select m so that (ii < e when i ~ m. Select N ~ m so that
n- 2 L:7'~-01 IX;4; < e when n ~ N. Then for any n ~ N we will have

m-l k

(l/32)n- 2A(n)~n~2 L etAi+n- 2 LetA;
i=O i=m

i=m
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Proof of Theorem 2.1. Let 0 be as in (1.1); we will show that
p'(x) ~ 0/4 for n sufficiently large. Suppose not; then there is an infinite
subset of natural numbers N* such that the following is true for n E N*,

(2.1 )

where X n , n E N*, is a sequence of points in the interval [-1, 1]. By the
Mean-Value Theorem and the lemma we have just proved, we have, for n
sufficiently large, that

where 0 $; h $; n -2 and the sign + or - is chosen so that X n +h or X n - h
is in the interval [ -1, 1]. In the following, for the convenience of writing,
we assume that + has always been chosen.

By (2.1) and (2.2)

p~(xn + h) =p~(xn + h) - p~(xn) +p~(xn)

< 0/4 +0/4 = 0/2.

Using the Mean-Value Theorem again, we have

Pn(Xn+n- 2
) - Pn(xn) < 0/(2n 2

). (2.3)

As IIPn- fll =0(n- 2
) we may assume that Ilf -Pnll <0/(4n2

). Using this
last inequality and (2.3), we get

f(xn+n- 2
)- f(xn)

= [f(xn+n- 2 )-Pn(xn+n- 2
)]

+ [Pn(xn+n- 2
) - Pn(xn)] + [Pn(xn)- f(xn)]

< 0/(4n 2
) + 0/(2n 2

) + <5/(4n 2
) =0/n 2

•

This contradicts the assumption (1.1), and completes the proof.

Proof of Theorem 2.2. We choose the basic interval here to be [0, 1]
instead of [ - 1, 1]; there is no loss of generality in doing this.

Let

Then

g(X) = {X/ln(2/X),
0,

XE(O,I]

x=O.

g'(X) = {(In(2/X) + 1)/ln(2/x)2,
0,

XE(O,I]

x=O.
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Let f(x) = g(x) + DX, where D is as in (1.1). It is obvious that f satisfies
(1.2). Since

1
. g'(x)
1m --=00

x_a x(X

for any 0 < a < 1, we infer

g'(x) ¢ Lip a for every r:x. satisfying 0 < r:x. < 1.

By Theorem 2.1, the proof will be completed if we can show that
En(f)=o(n- 2). As En(f)=En(g) for n~l, it suffices to show that
En(g) = o(n- 2). Consider

X E [ -1,0) u (0, 1]

x=O.

Differentiating G(x) twice, we observe that G E C 2
[ -1, 1]. By Jackson's

Theorem En(G)=o(n- 2). Let Q2n be the 2nth best approximation polyno
mial of G. As G is even, so is Q2n [3, Chapt. 2, Problem 3], and therefore
Q2n(X) = qn(x2) where qn is a polynomial of degree n or less. We have now

Ilg(x)- qn(x)11 [0,1] = II X/In ~- qn(X)11
X [0.1]

= IIG(x) - Q2n(x)11 [-1,1] = o(n- 2
).

So we have En(g)=o(n- 2) and Theorem 2.2 is proved.

3. COMMENT AND CONJECTURE

If we read carefully the proofs of Theorems 1.2 and 1.3 by Fletcher and
Roulier [2], we find that the example in the proof of Theorem 1.3 satisfies
the condition of Theorem 2.1, i.e., En(f) = o(n -2), while the one in that of
Theorem 1.2 does not. The result of Theorem 2.2 also exhibits the p~wer

of Theorem 2.1.
We make the following conjecture:

CONJECTURE. Theorem 2.1 cannot be improved, in the sense that there
exists f E C[ -1, 1], satisfying (1.1), and En(f) = O(n- 2), such that Pn(x) is
not increasing for infinitely many n.
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