On a Problem in Monotone Approximation

Xingping Sun
Department of Mathematics, University of Texas, Austin, Texas 78712, U.S.A. Communicated by Oved Shisha
Received March 8, 1984; revised August 12, 1988

Abstract

Let $f \in C[-1,1]$. A sufficient condition is given which ensures that the nth polynomial of best approximation to f is increasing for n sufficiently large. Using this condition, we are able to give a counterexample to a theorem announced by Tzimbalario [6]. © 1989 Academic Press, Inc.

1. Introduction

Let n, k be nonnegative integers and let Π_{n} denote the set of algebraic polynomials of degree n or less. Let $C^{k}[-1,1]$ denote the class of functions which have a continuous k th derivative on $[-1,1](C[-1,1]$ will mean $\left.C^{0}[-1,1]\right)$.

For $f \in C[-1,1]$, define

$$
E_{n}(f)=\min _{p \in \Pi_{n}}\|p-f\|
$$

where || $\|$ denotes the uniform norm on $[-1,1]$. It is well known that for each n the above minimum is attained by a unique element in Π_{n}. We call this element the nth algebraic polynomial of best approximation to f. Later, if no confusion is likely to occur, we will always denote it by p_{n} for any given f.

The problem we study in this paper is the following: Let $f \in C[-1,1]$, and assume that there exists a $\delta>0$, such that

$$
\begin{equation*}
\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right) /\left(x_{1}-x_{2}\right) \geqslant \delta \tag{1.1}
\end{equation*}
$$

for all $x_{1}, x_{2} \in[-1,1]$ with $x_{1} \neq x_{2}$. What extra condition on f is needed to ensure that p_{n} is increasing for all n sufficiently large?

Roulier [4] showed that $f \in C^{2}[-1,1]$ is such a condition. Also in [4], Roulier asked: if $f \in C^{1}[-1,1]$ and satisfies (1.1) (or equivalently $f^{\prime}(x) \geqslant \delta$
for $x \in[-1,1]$), is p_{n} increasing for n sufficiently large? In [5], Roulier conjectured that the answer is negative.
In answering this question, Tzimbalario [6] announced the following theorem:

Theorem 1.1. Let f be a continuous function on $[-1,1]$ with f^{\prime} not in some $\operatorname{Lip} \alpha, \alpha<1$, and $f^{\prime} \geqslant \delta$ for some strictly positive δ. Then there are infinitely many n for which p_{n} is not increasing.

Fletcher and Roulier discussed this problem in [2]. Their main results there are the following two theorems.

Theorem 1.2. Let α be given in the interval $0<\alpha<1$. There exists $f \in C^{1}[-1,1]$ for which

$$
\begin{equation*}
f^{\prime}(x) \geqslant \delta>0, \quad x \in[-1,1] \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime} \in \operatorname{Lip} \alpha, \quad \text { but } \quad f^{\prime} \notin \operatorname{Lip}(\alpha+\varepsilon) \tag{1.3}
\end{equation*}
$$

for any $\varepsilon>0$, such that there are infinitely many n for which p_{n} is not increasing on $[-1,1]$.

Theorem 1.3. Let $0<\alpha<1$ be given. There exists a function $f \in C^{1}[-1,1]$ for which (1.2) and (1.3) hold and such that p_{n} is icreasing for all n sufficiently large.

Also in [2], Fletcher and Roulier drew the conclusion that Theorem 1.3 provides counterexamples to Tzimbalario's Theorem (Theorem 1.1).

We have noted that there might be the following different interpretations of Tzimbalario's Theorem:

Theorem 1.1a. Let f be a function in $C^{1}[-1,1]$ for which (1.2) holds. If there exists α in the interval $(0,1)$, such that $f^{\prime} \notin \operatorname{Lip} \alpha$, then there are infinitely many n for which p_{n} is not increasing.

Theorem 1.1b. Let f be a function in $C^{1}[-1,1]$ for which (1.2) holds. Iff $f^{\prime} \notin \bigcup_{0<\alpha<1} \operatorname{Lip} \alpha$, then there are infinitely n for which p_{n} is not increasing.

Theorem 1.3 only provides counterexamples to Theorem 1.1a, and it is obvious that a counterexample to Theorem 1.1b will automatically be one to Theorem 1.1a.

The purpose of this paper is to prove a stronger result on the positive aspect of the problem, and to provide a counterexample to Theorem 1.1b.

2. Main Results

Theorem 2.1. Let f be a function in $C[-1,1]$, satisfying (1.1). If $E_{n}(f)=o\left(n^{-2}\right)$, then p_{n} is increasing for all n sufficiently large.
Since $f \in C^{2}[-1,1]$ necessarily means $E_{n}(f)=o\left(n^{-2}\right)$, by Jackson's Theorem [1, pp. 147], Theorem 2.1 is stronger than Roulier's result [3].

Theorem 2.2. There exists $f \in C^{1}[-1,1]$ for which (1.2) holds, but $f^{\prime} \notin \bigcup_{0<x<1} \operatorname{Lip} \alpha$, such that p_{n} is increasing on $[-1,1]$ when n is sufficiently large.

The contradiction between Theorems 2.2 and 1.1 is apparent.
Lemma. Let $f \in C^{l}[-1,1]$ and $q_{n} \in \Pi_{n}$. If $\left\|q_{n}-f\right\|=o\left(n^{-2}\right)$ then $\left\|q_{n}^{\prime \prime}\right\|=o\left(n^{2}\right)$.
Proof. Let n be fixed, and choose k so that $2^{k}<n \leqslant 2^{k+1}$. Write

$$
q_{n}=\left(q_{n}-q_{2^{k+1}}\right)+\sum_{i=0}^{k}\left(q_{2^{i+1}}-q_{2^{i}}\right)+q_{1} .
$$

Since $q_{1}^{\prime \prime}=0, \quad\left\|q_{n}^{\prime \prime}\right\| \leqslant\left\|q_{n}^{\prime \prime}-q_{2^{k+1}}^{\prime \prime}\right\|+\sum_{i=0}^{k}\left\|q_{2^{\prime+1}}^{\prime \prime}-q_{2^{\prime \prime}}^{\prime \prime}\right\|$. Since $\left\|q_{n}-q_{2^{k+1}}\right\| \leqslant$ $\left\|q_{n}-f\right\|+\left\|f-q_{2^{k+1}}\right\|=o\left(n^{-2}\right)$, by Markov's Inequality, $\left\|q_{n}^{\prime \prime}-q_{2^{k+1}}^{\prime \prime}\right\|=$ $o\left(n^{2}\right)$.
Let $A(n)=\sum_{i=0}^{k}\left\|q_{2_{i+1}^{\prime \prime}}^{\prime}-q_{2 i}^{\prime \prime}\right\|$. It remains to show that $A(n)=o\left(n^{2}\right)$, i.e., that for any given $\varepsilon>0, A(n)<\varepsilon n^{2}$ for n sufficiently large.

We introduce some new notations by letting $v_{i}=q_{2}$ and $\beta_{i}=$ $\sup _{j \geqslant i}\left\|v_{j}-f\right\|$. We have $\left\|v_{i+1}-v_{i}\right\| \leqslant \beta_{i+1}+\beta_{i} \leqslant 2 \beta_{i}$.

By Markov's Inequality, $\left\|v_{i+1}^{\prime \prime}-v_{i}^{\prime \prime}\right\| \leqslant 2 \beta_{i}\left(2^{i+1}\right)^{4}$. As $\left\|q_{n}-f\right\|=o\left(n^{-2}\right)$, we may assume that $\beta_{i} \leqslant \alpha_{i}\left(2^{i}\right)^{-2}$ where $\alpha_{i} \downarrow 0$.

Now we have

$$
A(n) \leqslant \sum_{i=0}^{k} 2 \beta_{i}\left(2^{i+1}\right)^{4} \leqslant \sum_{i=0}^{k} 2 \alpha_{i}\left(2^{i}\right)^{-2}\left(2^{i+1}\right)^{4}=32 \sum_{i=0}^{k} \alpha_{i} 4^{i} .
$$

Given $\varepsilon>0$, select m so that $\alpha_{i}<\varepsilon$ when $i \geqslant m$. Select $N \geqslant m$ so that $n^{-2} \sum_{i=0}^{m-1} \alpha_{i} 4^{i}<\varepsilon$ when $n \geqslant N$. Then for any $n \geqslant N$ we will have

$$
\begin{aligned}
(1 / 32) n^{-2} A(n) & \leqslant n^{-2} \sum_{i=0}^{m-1} \alpha_{i} 4^{i}+n^{-2} \sum_{i=m}^{k} \alpha_{i} 4^{i} \\
& \leqslant \varepsilon+n^{-2} \varepsilon \sum_{i=m}^{k} 4^{i} \\
& \leqslant \varepsilon+n^{-2} \varepsilon 4^{k+1} \leqslant 5 \varepsilon
\end{aligned}
$$

Proof of Theorem 2.1. Let δ be as in (1.1); we will show that $p^{\prime}(x) \geqslant \delta / 4$ for n sufficiently large. Suppose not; then there is an infinite subset of natural numbers N^{*} such that the following is true for $n \in N^{*}$,

$$
\begin{equation*}
p_{n}^{\prime}\left(x_{n}\right)<\delta / 4 \tag{2.1}
\end{equation*}
$$

where $x_{n}, n \in N^{*}$, is a sequence of points in the interval $[-1,1]$. By the Mean-Value Theorem and the lemma we have just proved, we have, for n sufficiently large, that

$$
\begin{equation*}
\left|p_{n}^{\prime}\left(x_{n}\right)-p_{n}^{\prime}\left(x_{n} \pm h\right)\right|=\left|p_{n}^{\prime \prime}(\xi)\right| h \leqslant\left\|p_{n}^{\prime \prime}\right\| n^{-2}<\delta / 4 \tag{2.2}
\end{equation*}
$$

where $0 \leqslant h \leqslant n^{-2}$ and the sign + or - is chosen so that $x_{n}+h$ or $x_{n}-h$ is in the interval $[-1,1]$. In the following, for the convenience of writing, we assume that + has always been chosen.

By (2.1) and (2.2)

$$
\begin{aligned}
p_{n}^{\prime}\left(x_{n}+h\right) & =p_{n}^{\prime}\left(x_{n}+h\right)-p_{n}^{\prime}\left(x_{n}\right)+p_{n}^{\prime}\left(x_{n}\right) \\
& <\delta / 4+\delta / 4=\delta / 2
\end{aligned}
$$

Using the Mean-Value Theorem again, we have

$$
\begin{equation*}
p_{n}\left(x_{n}+n^{-2}\right)-p_{n}\left(x_{n}\right)<\delta /\left(2 n^{2}\right) . \tag{2.3}
\end{equation*}
$$

As $\left\|p_{n}-f\right\|=o\left(n^{-2}\right)$ we may assume that $\left\|f-p_{n}\right\|<\delta /\left(4 n^{2}\right)$. Using this last inequality and (2.3), we get

$$
\begin{aligned}
f\left(x_{n}+\right. & \left.n^{-2}\right)-f\left(x_{n}\right) \\
= & {\left[f\left(x_{n}+n^{-2}\right)-p_{n}\left(x_{n}+n^{-2}\right)\right] } \\
& +\left[p_{n}\left(x_{n}+n^{-2}\right)-p_{n}\left(x_{n}\right)\right]+\left[p_{n}\left(x_{n}\right)-f\left(x_{n}\right)\right] \\
< & \delta /\left(4 n^{2}\right)+\delta /\left(2 n^{2}\right)+\delta /\left(4 n^{2}\right)=\delta / n^{2} .
\end{aligned}
$$

This contradicts the assumption (1.1), and completes the proof.
Proof of Theorem 2.2. We choose the basic interval here to be $[0,1]$ instead of $[-1,1]$; there is no loss of generality in doing this.

Let

$$
g(x)= \begin{cases}x / \ln (2 / x), & x \in(0,1] \\ 0, & x=0\end{cases}
$$

Then

$$
g^{\prime}(x)= \begin{cases}(\ln (2 / x)+1) / \ln (2 / x)^{2}, & x \in(0,1] \\ 0, & x=0\end{cases}
$$

Let $f(x)=g(x)+\delta x$, where δ is as in (1.1). It is obvious that f satisfies (1.2). Since

$$
\lim _{x \rightarrow 0} \frac{g^{\prime}(x)}{x^{x}}=\infty
$$

for any $0<\alpha<1$, we infer

$$
g^{\prime}(x) \notin \operatorname{Lip} \alpha \quad \text { for every } \quad \alpha \text { satisfying } \quad 0<\alpha<1
$$

By Theorem 2.1, the proof will be completed if we can show that $E_{n}(f)=o\left(n^{-2}\right)$. As $E_{n}(f)=E_{n}(g)$ for $n \geqslant 1$, it suffices to show that $E_{n}(g)=o\left(n^{-2}\right)$. Consider

$$
G(x)= \begin{cases}x^{2} / \ln \left(2 / x^{2}\right), & x \in[-1,0) \cup(0,1] \\ 0, & x=0 .\end{cases}
$$

Differentiating $G(x)$ twice, we observe that $G \in C^{2}[-1,1]$. By Jackson's Theorem $E_{n}(G)=o\left(n^{-2}\right)$. Let $Q_{2 n}$ be the $2 n$th best approximation polynomial of G. As G is even, so is $Q_{2 n}$ [3, Chapt. 2, Problem 3], and therefore $Q_{2 n}(x)=q_{n}\left(x^{2}\right)$ where q_{n} is a polynomial of degree n or less. We have now

$$
\begin{aligned}
\left\|g(x)-q_{n}(x)\right\|_{[0,1]} & =\left\|x / \ln \frac{2}{x}-q_{n}(x)\right\|_{[0,1]} \\
& =\left\|x^{2} / \ln \frac{2}{x^{2}}-q_{n}\left(x^{2}\right)\right\|_{[-1,1]} \\
& =\left\|G(x)-Q_{2 n}(x)\right\|_{[-1,1]}=o\left(n^{-2}\right) .
\end{aligned}
$$

So we have $E_{n}(g)=o\left(n^{-2}\right)$ and Theorem 2.2 is proved.

3. Comment and Conjecture

If we read carefully the proofs of Theorems 1.2 and 1.3 by Fletcher and Roulier [2], we find that the example in the proof of Theorem 1.3 satisfies the condition of Theorem 2.1, i.e., $E_{n}(f)=o\left(n^{-2}\right)$, while the one in that of Theorem 1.2 does not. The result of Theorem 2.2 also exhibits the power of Theorem 2.1.

We make the following conjecture:
Conjecture. Theorem 2.1 cannot be improved, in the sense that there exists $f \in C[-1,1]$, satisfying (1.1), and $E_{n}(f)=O\left(n^{-2}\right)$, such that $p_{n}(x)$ is not increasing for infinitely many n.

Acknowledgment

I express my gratitude to Professor Gao Fuhong for his encouragement and suggestions. Also, I thank the referees for their valuable comments which helped to correct inaccuracies and errors in the original manuscript. Finally I thank Professor E. W. Cheney who spent much time making the paper easier to read.

References

1. E. W. Cheney, "Introduction to Approximation Theory," 1st ed., McGraw-Hill, New York, 1966.
2. Y. Fletcher and J. A. Roulier, Approximation of functions with positive derivative, J. Approx. Theory 25 (1979), 50-55.
3. G. G. Lorentz, "Approximation of Functions," Holt, Rinehart \& Winston, New York, 1966.
4. J. A. Rouler, Best approximation to functions with restricted derivatives, J. Approx. Theory 17 (1976), 344-347.
5. J. A. Roulier, Negative results on monotone approximation, Proc. Amer. Math. Soc. 55 (1976), 37-43.
6. J. Tzimbalario, Derivatives of polynomials of best approximation, Bull. Amer. Math. Soc. 83 (1977), 1311-1312.
